Machine Learning. Mitchell, T. (1997). New York: McGraw-Hill.
Machine Learning: A Probabilistic Perspective. Murphy, K. (2012). Cambridge, Mass.: MIT Press.
Pattern Recognition and Machine Learning. Bishop, C. (2006). New York: Springer.
The elements of statistical learning : data mining, inference, and prediction. Hastie, T., Tibshirani, R., & Friedman, J. (2001). New York: Springer.
Deep Learning. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Cambridge, Massachusetts: The MIT Press.
Reinforcement Learning: An Introduction. Sutton, R., & Barto, A. (1998). Cambridge, Mass.: MIT Press.
Reinforcement Learning: An Introduction (2nd edition, online draft). Sutton, R., & Barto, A. (2018)
Understanding Machine Learning: From Theory to Algorithms. Shalev-Shwartz, S., & Ben-David, S. (2014). New York, NY, USA: Cambridge University Press.
Machine Learning: A Concise Introduction. Knox, S. (2018). Hoboken, New Jersey: Wiley.
Optimization for Machine Learning. Nowozin, S., Sra, S., & Wright, S. (2012). Cambridge, Mass.: MIT Press.
Unsupervised learning algorithms. Aydin, K., & Celebi, M. (2016). Cham: Springer. doi:10.1007/978-3-319-24211-8
An Introduction to Statistical Learning: With Applications in R. James, G. et al. (2017). New York, NY: Springer New York.
Introduction to statistical machine learning. Sugiyama, M. (2016). Amsterdam: Elsevier.
Probabilistic Graphical Models: Principles and Techniques. Koller, D., & Friedman, N. (2009). Cambridge, Mass.: MIT Press.
Machine learning : a Bayesian and optimization perspective. Theodoridis, S. (2015). Amsterdam, [Netherlands]: Academic Press.
Machine learning : an algorithmic perspective. Marsland, S. (2015). (2nd ed.). Boca Raton: CRC Press.
Probabilistic Graphical Models: Principles and Applications. Sucar, L. (2015). Probabilistic Graphical Models Principles and Applications . London: Springer London. doi:10.1007/978-1-4471-6699-3
Learning From Data. (Used by CalTech MOOC) (2012).
Introduction to pattern recognition and machine learning. Murty, M., & Devi, V. (2015). New Jersey: World Scientific.
Python machine learning by example : easy-to-follow examples that get you up and running with machine learning. Liu, Y. (2017). Birmingham, [England] ;: Packt Publishing.
An Introduction to Machine Learning. 2nd ed. 2017. [Online]. Kubat, M. (2017). Cham: Springer International Publishing.
Foundations of machine learning. Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Cambridge, MA: MIT Press.
An Elementary Introduction to Statistical Learning Theory. Kulkarni, S., & Harman, G. (2011). Hoboken, NJ, USA: John Wiley & Sons, Inc. doi:10.1002/9781118023471
Probability for Statistics and Machine Learning Fundamentals and Advanced Topics. DasGupta, A. (2011). New York, NY: Springer New York. doi:10.1007/978-1-4419-9634-3
Introduction to machine learning. Alpaydin, E. (2014). (Third edition.). Cambridge, Massachusetts: MIT Press.
Principles and theory for data mining and machine learning. Clarke, B., Fokoué, E., & Zhang, H. (2009). Berlin ;: Springer.
Encyclopedia of Machine Learning.Sammut, C., & Webb, G. (2010). Boston, MA: Springer US. doi:10.1007/978-0-387-30164-8